

Mark Scheme (Results)

October 2020

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2020 Publications Code WST02_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Question Number		Scheme	Marks
1 (a)	$\int_{1}^{2} k \left(\frac{1}{2}x\right)^{2}$	$^{3}-3x^{2}+ax+1$)dx[=1]	M1
	$k\left[\frac{1}{8}x^4-\right]$	$x^{3} + \frac{1}{2}ax^{2} + x \Big]_{1}^{2} [=1]$	A1
	k(2-8+	$-2a+2$) $-k\left(\frac{1}{8}-1+\frac{1}{2}a+1\right)=1$ or $k(2a-4)-k\left(\frac{1}{8}+\frac{1}{2}a\right)=1$	dM1
	$-\frac{33}{8}k + \frac{33}{8}k + 3$	$\frac{3}{2}ka = 1$: $k(12a - 33) = 8*$	A1 *
			(4)
(b)		$k\left(\frac{3}{2}x^2 - 6x + a\right)$	M1
	$\frac{3}{2}x^2 - 6$	$5x + 5 = 0$ or $\frac{4}{9}x^2 - \frac{16}{9}x + \frac{40}{27} = 0$	dM1
	$x = \frac{6 \pm \sqrt{2}}{2}$	$\frac{\sqrt{6^2 - 4 \times 1.5 \times 5}}{3}$	M1
	$x = 2 - \frac{1}{2}$	$\frac{\sqrt{6}}{3}$ oe or 1.183 awrt 1.18	A1
			(4)
		Notes	Total 8
1(a)	M1	Attempting to integrate $f(x)$, (at least one term $x^n \rightarrow x^{n+1}$). Ignore limits. No Need to a	equate to 1
	A1	Fully correct integration. Allow not simplified. Ignore limits and accept any letters. A No Need to equate to 1	Allow $+ C$
	dM1	Dep on 1 st M1. Subst in correct limits, subtracting results and equate to 1 Allow if the <i>C</i> the use of $F(2) = 1$ and $F(1) = 0$ to form 2 equations and solve to eliminate -	+ C
	A1*	Answer is given. Correct solution only. At least one correct line of working required $k(2a-4)-k(\frac{1}{8}+\frac{1}{2}a)=1$ and the final given answer.	between
(b)	M1	Attempting to differentiate $f(x)$, (at least one term $x^n \to x^{n-1}$). Condone missing k or i value for k	ncorrect
	dM1	Dependent on first Method mark being awarded. Putting their differential (or multiple May be implied by awrt 1.18 or awrt 2.82	
	M1	Correct method for solving their 3 term quadratic equation. May be implied by awrt	1.18 or
		awrt 2.82 Minimum for method if final answer is incorrect is of the form $\frac{6\pm\sqrt{6}}{3}$	
	A1	Allow equivalent exact answer. awrt 1.18 Must eliminate the 2.816 or clearly indi of the 2 solutions is their answer	cate which

Question Number		Scheme	Marks
2(a)	$f(w) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} \frac{1}{8} & -1.4 < w < 6.6 \\ 0 & \text{otherwise} \end{array} $	M1 A1
(b)	E(W) =	2.6 oe	(2) B1
			(1)
(c)	$(1.6-\alpha)$	$\times "\frac{1}{8}" = 0.35$	M1
(•)		$\alpha = -1.2$ oe	A1cso (2)
(d)	P(1.2 <	$W < 2.4) = (2.4 - 1.2) \times "\frac{1}{8}"$	(2) M1
		$W < 2.4) = (2.4 - 1.2) \times "\frac{1}{8}"$ = $\frac{3}{20}$ or 0.15 oe	A1ft
			(2)
(e)	P(W > 2)	$2 1.2 < W < 2.4) = \frac{0.4 \times "\frac{1}{8}}{"0.15"}$	M1
		$=\frac{1}{3}$ awrt 0.333	A1
			(2)
(f)		dom variable Y is the number of days the train is between 1.2 minutes and 2.4 minutes $B(40, "0.15")$	M1
	$P(Y \ge 10)$	$(1) = 1 - P(Y \le 9) \text{ or } 1 - 0.9328$	M1
		= 0.0672 awrt 0.0672 Notes	A1 (3) Total 12
2(a)	M1	pdf of the form $[f(w) =] \begin{cases} p & -1.4 < w < 6.6 \\ 0 & \text{otherwise} \end{cases}$ where <i>p</i> is a probability allow use of one/both < signs. Allow equivale otherwise. Allow any letter/mix of l	$f \leq instead$ ont for the 0
	A1	Fully correct allow use of \leq instead of one/both $<$ signs. Allow any letter but must be c	
(b)	B1	2.6 oe	
(c)	M1	setting up equation $(1.6 - \alpha) \times$ " their p " = 0.35 with $0 or \frac{7}{20} = \frac{2.8}{8} and \alpha = 1.6 - 10^{-10}$	"2.8"
		or F(1.6) – F(α) = 0.35 using their F(w) in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their f (w) "d w = 0.35 oe with an attempt to integrate (at least one term of	correct).
	A1 cso	or F(1.6) – F(α) = 0.35 using their F(w) in the form $bw + c$ where $0 < b < 1$	correct).
		or F(1.6) – F(α) = 0.35 using their F(w) in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their f (w) "d w = 0.35 oe with an attempt to integrate (at least one term of	
(d)		or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their $f(w)$ "d $w = 0.35$ oe with an attempt to integrate (at least one term constraints in the form $bw + c$ where $f(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p " where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15	
(d)	A1 cso M1	or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their f (w) "dw = 0.35 oe with an attempt to integrate (at least one term of If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters (2.4-1.2)×" their p" where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their f (w) "dw with an attempt to integrate (at least one term correct).	
(d)	A1 cso	or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their f (w) "dw = 0.35 oe with an attempt to integrate (at least one term of If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ " their p" where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their f (w) "dw with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability) in the
(d) (e)	A1 cso M1	or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their f (w)"dw = 0.35 oe with an attempt to integrate (at least one term of If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p" where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their f (w)"dw with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability $\frac{0.4 \times$ "their $\frac{1}{8}$ " or $\frac{0.4}{1.2}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their f (w)"dw with an attempt to) in the
	A1 cso M1 A1ft M1	or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their $f(w)$ "d $w = 0.35$ oe with an attempt to integrate (at least one term of If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p " where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their $f(w)$ "d w with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability $\frac{0.4 \times$ "their $\frac{1}{8}$ " or $\frac{0.4}{"1.2"}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their $f(w)$ "d w with an attempt to (at least one term correct) for numerator) in the
(e)	A1 cso M1 A1ft M1 A1	or $F(1.6) - F(a) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{a}^{1.6}$ "their f (w) "dw = 0.35 oe with an attempt to integrate (at least one term c If using $F(1.6) - F(a) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p" where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their f (w) "dw with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability $\frac{0.4 \times$ "their $\frac{1}{8}$ " or $\frac{0.4}{"1.2"}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their f (w) "dw with an attempt to (at least one term correct) for numerator Allow 0.3 or 0.33) in the
	A1 cso M1 A1ft M1	or $F(1.6) - F(\alpha) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{\alpha}^{1.6}$ "their $f(w)$ "d $w = 0.35$ oe with an attempt to integrate (at least one term of If using $F(1.6) - F(\alpha) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p " where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their $f(w)$ "d w with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability $\frac{0.4 \times$ "their $\frac{1}{8}$ " or $\frac{0.4}{"1.2"}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their $f(w)$ "d w with an attempt to (at least one term correct) for numerator Allow 0.3 or 0.33 Writing or using B(40, " their 0.15") Implied by mean of $40 \times$ "their (d)") in the
(e)	A1 cso M1 A1ft M1 A1 M1 A1	or $F(1.6) - F(a) = 0.35$ using their $F(w)$ in the form $bw + c$ where $0 < b < 1$ Allow for $\int_{a}^{1.6}$ "their f (w) "dw = 0.35 oe with an attempt to integrate (at least one term c If using $F(1.6) - F(a) = 0.35$ then $F(w)$ must be correct. Allow different letters $(2.4 - 1.2) \times$ "their p" where "their $\frac{1}{8}$ " is a probability or $F(2.4) - F(1.2)$ using their $F(w)$ form $bw + c$ where $0 < b < 1$ Implied by 0.15 Allow for $\int_{1.2}^{2.4}$ "their f (w) "dw with an attempt to integrate (at least one term correct). Ft their p as long as the answer is a probability $\frac{0.4 \times$ "their $\frac{1}{8}$ " or $\frac{0.4}{"1.2"}$ implied by $\frac{1}{3}$ Allow for $\int_{2}^{2.4}$ "their f (w) "dw with an attempt to (at least one term correct) for numerator Allow 0.3 or 0.33) in the

Question Number		Scheme	Marks
3(a)(i)	$X \sim B(10)$	0, 0.45)	M1
~ / ~ /		awrt 0.0233 awrt 0.0233	A1
(ii)	$P(X \ge 6$	$P = 1 - P(X \le 5) \text{ or } 1 - 0.7384$	M1
		= 0.2616 awrt 0.262	A1
(1)		20.7)	(4)
(b)	$F \sim N(54, -1)$,	M1A1
	$\frac{c+0.5-}{\sqrt{22}}$	$\frac{54}{2} \le -1.6449$ or $\frac{d - 0.5 - 54}{\sqrt{29.7}} \ge 1.6449$	M1M1B1
	v =>	v =>	A1
	c = 44 an	ad $d = 64$	Alcso
()	II O	A.C	(7)
(c)	H ₀ : $p = 0$	·	B1
		$(0, 0.45)$ therefore $P(Y \le 8) = 0.03$ or CR $Y \le 8$	B1
		e critical region or Reject H_0 oe or significant	dM1
	therefore	the data collected supports the manufacturer's claim .	A1 (4)
		Notes	(4) Total 15
(a)(i)	M1	Writing or using B(10, 0.45) in (i) or (ii) implied by a correct answer to (i) or	
(a)(1)	A1	awrt 0.0233	(11)
(ii)	M1	For writing or using $1 - P(X \le 5)$ oe	
(11)	A1	awrt 0.262	
(b)	M1	For writing or using N(54,)	
(0)	A1	For writing or using N(54, 29.7)	
		For standardising (allow \pm) using their "54" and "29.7" and putting = to z val	ue where
	M1	1 < z < 2 Condone missing ±0.5	
	M1	M1 for using a continuity correction ± 0.5 in standardisation. No need to put =	to z value = to z
	B 1	For using 1.6449 or better (calc gives) 1.64485 Allow if written then gone of 1.65 or 1.64 or better in equation	on to use
	A1	One correct inequality. Allow written as an equation. Allow with $1.65/1.64$ or	better
	A1cso	All previous marks awarded. Both c and d correct integers	
		NB: c and d correct with no working can be awarded full marks	
(c)	B1	Both hypotheses correct in terms of p or π Must be attached to H ₀ and H ₁	
	B1	0.03 or better (0.03120) or CR stated as $Y \le 8$ oe do not accept $P(Y \le 8) = .$	for CR
		Condone 0.97 or better (0.96879)	
	dM1	Dep on 2 nd B1 A correct statement – need not be contextual but do not allow	
		contradicting non contextual comments.	
		Allow opposite conclusion if 2-tail hypotheses given.	
	A1	Correct conclusion for their H_1 . If H_1 is 2- tail the opposite conclusion must be	
		hypotheses or H ₁ $p > 0.45$ is A0. Allow belief instead of claim. Allow the dat	
		hypotheses or $H_1 p > 0.45$ is A0. Allow belief instead of claim. Allow the dat supports that the proportion/percentage/probability/number/amount oe of plates has decreased/reduced/is not 0.45/has changed oe	

Question Number		Scheme	Ma	rks
4(a)	Common	Spotted-orchids occur singly/randomly/independently	B1	
				(1)
(b)(i)	$S \sim Po(4.$	5)		
	P(S=6)	$=\frac{e^{-4.5}4.5^6}{6!} \text{ or } P(S \le 6) - P(S \le 5)$	M1	
		= 0.1281 awrt 0.128	A1	
(ii)	P(4 < S <	$(10) = P(S \le 9) - P(S \le 4)$ or $0.9829 - 0.5321$	M1	
		= 0.4508 awrt 0.451	A1	
				(4)
(c)		9 $H_1: \lambda > 9$	B1	
	$M \sim \text{Po}$	(9) $P(M \ge 11) = 1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$	M1	
-		$= 0.294$ or CR $M \ge 15$	A1	
	Accept H	I ₀ or insignificant or 11 does not lie in the critical region	dM1	
	There is i	insufficient evidence to support Juan's belief	A1	
				(5)
(d)	$T \sim N(90)$		B1	
	P(T < 7)	0) = P $\left(Z < \pm \left(\frac{69.5 - 90}{\sqrt{90}}\right)\right)$ or P(Z < ± 2.160) awrt 2.16	M1	
		= 0.0154 awrt 0.0154	A1	(3)
		00.0010 $P_{2}(2.4) U = P_{2}(2.4)$	M1	(5)
(e)	$V \sim P_0(2)$	$UU \times U(U1/2) = PO(2/4) V \sim = PO(2/4)$		
(e)		$\frac{00 \times 0.012}{00 \times 0.012} = \text{Po}(2.4) \ V \sim = \text{Po}(2.4)$		
(e)		$+ P(V = 1) = e^{-2.4}(1 + 2.4)$	dM1	
(e)				
(e)		$P(V = 1) = e^{-2.4}(1 + 2.4)$ = 0.30844 awrt 0.308	dM1 A1	(3)
	P(V=0)	$P(V = 1) = e^{-2.4}(1 + 2.4)$ = 0.30844 awrt 0.308 Notes	dM1 A1	(3) al 16
(e) 4(a) (b)(i)	· · · ·	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed	dM1 A1	
4(a)	P(V=0) B1	$P + P(V = 1) = e^{-2.4}(1 + 2.4)$ = 0.30844 awrt 0.308	dM1 A1	
4(a)	P(V = 0) B1 M1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$	dM1 A1	
4(a) (b)(i)	P(V = 0) B1 M1 A1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128	dM1 A1	
4(a) (b)(i)	P(V = 0) B1 M1 A1 M1	$+P(V=1) = e^{-2.4}(1+2.4)$ $= 0.30844$ awrt 0.308 $\boxed{\text{Notes}}$ One of the given reasons. No context needed $\boxed{\text{For } \frac{e^{-\lambda}\lambda^{6}}{6!}}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 $\boxed{\text{Writing or using } P(S \le 9) - P(S \le 4)}$	dM1 A1 Tot	al 16
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1 B1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 $\frac{Notes}{0}$ One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^{6}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corr	dM1 A1 Tot	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 $\frac{Notes}{0}$ One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^{6}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corrawrt 0.3 or 0.29 or better (0.2940)	dM1 A1 Tot	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 M1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 $\frac{Notes}{0}$ One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^{6}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corr	dM1 A1 Tot	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1 B1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 $\frac{Notes}{0}$ One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^{6}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corrawrt 0.3 or 0.29 or better (0.2940)	dM1 A1 Tot	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 M1	$P + P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^{6}}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by correct awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradiction	dM1 A1 Tot	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 B1 M1 A1 B1 M1 A1	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 $\frac{Notes}{0}$ One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using $P(S \le 6) - P(S \le 5)$ awrt 0.128 Writing or using $P(S \le 9) - P(S \le 4)$ awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using P(9) and $1 - P(M \le 10)$ or $P(M \ge 15) = 0.0415$ oe Implied by corrawrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or $M \ge 15$ oe SC: Condone $P(X \le 10) = 0.7$ or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given.	dM1 A1 Tot instead ect CR	of 9.
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 B1 M1 A1 B1 M1 A1	$P + P(V = 1) = e^{-2.4} (1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda} \lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correating awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evides support hat the number of Common Spotted- orchids has increased / <i>i</i> is not 9/has character	dM1 A1 Tot instead ect CR ng non eses or nce to	of 9. or
4(a) (b)(i) (ii) (c)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 A1 A1 A1 A1 A1 A1 A	$P + P(V = 1) = e^{-2.4} (1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda} \lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correating awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has cha (with the bold words included).	dM1 A1 Tot instead ect CR ng non eses or nce to	of 9. or
4(a) (b)(i) (ii)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 A1 A1 B1 M1 A1 B1 B1 B1 B1 B1 B1 B	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda} \lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using Po(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correated awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypother $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has cha (with the bold words included). Writing or using N(90, 90)	dM1 A1 Tot instead ect CR ng non eses or nce to	of 9. or
4(a) (b)(i) (ii) (c)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 A1 dM1 A1 B1 M1 A1 M1 A1 M1 A1 M1 A1 M1 M	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using P(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correating awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has char (with the bold words included). Writing or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd	dM1 A1 Tot instead ect CR ng non eses or nce to	of 9. or
4(a) (b)(i) (ii) (c) (d)	P(V = 0) B1 M1 A1 A	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using P(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correating awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has char (with the bold words included). Writing or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275	dM1 A1 Tot instead ect CR ng non eses or nce to	of 9. or
4(a) (b)(i) (ii) (c)	P(V = 0) B1 M1 A1 M1 A1 B1 M1 A1 dM1 A1 B1 M1 A1 A	$P(V = 1) = e^{-2.4} (1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using P0(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by corr awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradictint contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothet $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has cha (with the bold words included). Writing or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275 Writing or using Po(200 × 0.012) Allow Po(200 × "their d")	dM1 A1 Tot instead ect CR ng non eses or nce to anged of	of 9. or H ₀ pe
4(a) (b)(i) (ii) (c) (d)	P(V = 0) B1 M1 A1 A	$P(V = 1) = e^{-2.4}(1 + 2.4)$ $= 0.30844$ awrt 0.308 Notes One of the given reasons. No context needed For $\frac{e^{-\lambda}\lambda^6}{6!}$ with any value for λ or writing or using P(S ≤ 6) – P(S ≤ 5) awrt 0.128 Writing or using P(S ≤ 9) – P(S ≤ 4) awrt 0.451 Both hypotheses correct. Must be attached to H ₀ and H ₁ in terms of λ or μ . Allow 4.5 Writing or using P(9) and 1 – P(M ≤ 10) or P(M ≥ 15) = 0.0415 oe Implied by correating awrt 0.3 or 0.29 or better (0.2940) 0.3 or 0.29 or better (0.2940) or M ≥ 15 oe SC: Condone P(X ≤ 10) = 0.7 or better (0.705988) for M1A1 Dep on M1 A1. A correct statement– no context needed but do not allow contradicting contextual comments. Allow opposite conclusion if 2-tail hypotheses given. Correct conclusion. If H ₀ is 2- tail the opposite conclusion must be given. No hypothe $\lambda < 9$ gets A0. Allow claim instead of belief. Alternative: There is insufficient evide support hat the number of Common Spotted-orchids has increased//is not 9/has char (with the bold words included). Writing or using N(90, 90) Standardising with 68.5 or 69.5 or 70.5 and their mean and sd awrt 0.0154 NB Poisson gives 0.01275	dM1 A1 Tot instead ect CR ng non eses or nce to anged of	of 9. or H ₀ pe

Question Number		Scheme	Marks
5(a)	$E(T^2)$	$0 = \int_0^3 \frac{1}{50} \left(18t^2 - 2t^3 \right) dt + \int_3^5 \frac{1}{20} t^2 dt$	M1
		$= \left[\frac{1}{50}\left(6t^{3} - \frac{t^{4}}{2}\right)\right]_{0}^{3} + \left[\frac{t^{3}}{60}\right]_{3}^{5} \text{ or } = \left[\frac{3}{25}t^{3} - \frac{t^{4}}{100}\right]_{0}^{3} + \left[\frac{t^{3}}{60}\right]_{3}^{5} \text{ oe}$	A1
		$=\frac{1}{50}\left(6\times3^{3}-\frac{3^{4}}{2}\right)+\left(\frac{125}{60}-\frac{27}{60}\right) \text{ or } =\frac{1}{50}\left(162-\frac{81}{2}\right)+\left(\frac{25}{12}-\frac{9}{20}\right) \text{ oe}$	M1d
		$=\frac{1219}{300}=4.063$	
	Var(7	$T = 4.063 (1.66)^2$	M1
	V al (1		
		= 1.3077 awrt 1.31	A1 (5)
(b)	$\int_{3}^{t} \frac{1}{20} dx$	x + C where C = 0.9 or $\int_0^3 \frac{1}{50} (18 - 2t) dt$ or using F(5) =1 to find C	M1
		(0 <i>t</i> < 0	B1
		$\left[F(t) = \right] \begin{cases} \frac{1}{50} \left(18t - t^2 \right) \text{ or } 1.62 - \frac{\left(18 - 2t\right)^2}{200} & 0 \le t \le 3\\ \frac{1}{20}t + 0.75 & 3 < t \le 5 \end{cases}$	A1
		$\frac{1}{20}t + 0.75$ $3 < t \le 5$	A1
		l 1 t > 5	(4)
(c)	P(T >	>2) = 1 - " $\frac{1}{50} (18 \times 2 - 2^2)$ " or $1 - \int_0^2 \frac{1}{50} (18 - 2t) dt$	M1
		$=\frac{9}{25}$ or 0.36	A1
			(2)
(d)	P(0 <	T < 3.66) = F(3.66)	M1
		= 0.933	A1
		NT-4	(2)
(a)	M1	Notes	Total 13
(u)		Intention to find $E(T^2)$ correctly. They must add the 2 integrals and attempt to integrate one term $x^n \to x^{n+1}$). Algebraic integration must be seen. Ignore limits. Allow as part of condone "-(1.66) ² " occurring twice. If no algebraic integration shown it is M0	
	A1	Correct integration	
	M1d	dep on previous M being awarded for correct limits and attempt to substitute. If no work An attempt may be implied by a correct answer or 1219/300 or 243/100 or 49\30 oe	ting shown
	M1	For their $E(T^2) - 1.66^2$	
	A1	awrt 1.31 Allow 2452/1875 oe	
(b)	M1	For a correct method to find the 3^{rd} line including limits unless using $F(5) = 1$ method.	
	B1	2 nd line correct – any letter. Ignore missing inequality	
	A1	3 rd line correct– any letter. Ignore missing inequality	
	A1	Fully correct CDF All in terms of the same letter (Ignore LHS). Allow < instead of \leq as	nd vice
	7.54	versa. Allow "otherwise" for the range on the 1^{st} or last line but not both.	
(c)	M1	For finding $1 - F(2)$ using their second line or starting again. Must subst in 2	
(1)	A1 M1	$\frac{1}{100}$	1
(d)	M1	For realising they need F(3.66) Allow F(3.66) $[-F(0)]$ allow F("their mean +2") $[-F(0)]$ Cao allow answer as a fraction	
	A1		

PMT

Question Number		Scheme	Marks
6(a)	<u>probabi</u>	ing distribution is <u>all</u> the <u>values</u> of a <u>statistic</u> and the associated <u>lities</u> robability distribution of the <u>statistic</u> .	B1
			(1)
(b)	P(small((40) = 0.5, P(medium(80)) = 0.3, P(large(150)) = 0.2	B1
	Range (A	R) 0, 40, 70, 110	B1
	$\left[P(R=$	$0) =]"0.5"^{3} + "0.3"^{3} + "0.2"^{3} = 0.16$	M1
	(80,80,1	0) (40,80,80) 50) (80,150,150) 50) (40,80,150) (40,150,150)	B1
	$\int P(R =$	$40) =]3 \times ("0.5" \times "0.3"^{2}) + 3 \times ("0.5"^{2} \times "0.3")$	
	`	$70) = \frac{3}{3} \times ("0.3"^{2} \times "0.2") + 3 \times ("0.3" \times "0.2"^{2}) = 0.09$	M1 M1
	$\begin{bmatrix} P(R=1) \end{bmatrix}$	$10) =]3 \times ("0.5"^{2} \times "0.2") + 3 \times ("0.5" + "0.2"^{2}) + 6 \times ("0.5" \times "0.3" \times "0.2") = 0.39$	
	R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1cao
	r	0.10 0.50 0.09 0.59	(7)
(c)	(1-"0.0	$(9'')^n < 0.2$ or $((0.91'')^n < 0.2$	M1
(-)	[n >]17.		M1
	n = 18		
	n-10	8	A1 (3)
		Notes	A1 (3) Total 11
6(a)	B1	Notes A correct explanation with the words in bold. Allow equivalent words eg out	(3) Total 11
6(a) (b)		Notes A correct explanation with the words in bold. Allow equivalent words eg out values Correct probabilities – may be seen in an equation or implied by a correct pro-	(3) Total 11 comes for
	B1	Notes A correct explanation with the words in bold. Allow equivalent words eg out values	(3) Total 11 comes for
	B1 B1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$	(3) Total 11 comes for bability
. ,	B1 B1 B1 B1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40, R = 70, R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40, 70$ and $110. R = 0$ combinations are n required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40), P(R = 110)$ $P(R = 110)$ or by correct working seen for each of the 7 combinations (no need)	(3) Total 11 comes for bability ot than = 70) and
. ,	B1 B1 B1 B1 M1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40, R = 70, R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40, 70$ and 110 . $R = 0$ combinations are no required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40), P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$	(3) Total 11 comes for bability ot than = 70) and d for the
. ,	B1 B1 B1 M1 B1 B1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40, R = 70, R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40, 70$ and $110. R = 0$ combinations are n required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40), P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$ Correct method for a second probability for $P(R = 40), P(R = 70), P(R = 110)$	(3) Total 11 comes for bability ot than = 70) and d for the 10)
. ,	B1 B1 B1 M1 B1 B1 M1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40, R = 70, R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40, 70$ and $110. R = 0$ combinations are no required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40), P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$ Correct method for one of the probabilities for $P(R = 40), P(R = 10)$	(3) Total 11 comes for bability ot than = 70) and d for the 10)
. ,	B1 B1 B1 M1 B1 B1 M1 M1 M1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40$, 70 and 110. $R = 0$ combinations are m required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40)$, $P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg ($40,40,80$) = $0.5^2 \times 0.3$ Correct method for a second probability for $P(R = 40)$, $P(R = 70)$, $P(R = 110)$ Probabilities add up to 1.	(3) Total 11 comes for bability ot than = 70) and d for the 10)
. ,	B1 B1 B1 M1 B1 B1 M1 M1 M1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40$, 70 and 110. $R = 0$ combinations are no required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40)$, $P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$ Correct method for a second probability for $P(R = 40)$, $P(R = 70)$, $P(R = 110)$ probabilities add up to 1.Correct answer only. Allow answers as a fraction. Need not be in a table but probabilities must be attached to the correct rangeSetting up a correct inequality using their 0.09Allow written as an equation.	(3) Total 11 comes for bability ot than = 70) and d for the (0)) or the 4
(b)	B1 B1 B1 M1 B1 M1 B1 M1 M1 A1 M1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40, R = 70, R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40, 70$ and $110. R = 0$ combinations are n required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40), P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times or 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$ Correct method for a second probabilities for $P(R = 40), P(R = 70), P(R = 110)$ Correct answer only. Allow answers as a fraction. Need not be in a table but probabilities must be attached to the correct range	(3) Total 11 comes for bability ot than = 70) and d for the (0)) or the 4
(b)	B1 B1 B1 M1 B1 B1 M1 M1 A1	NotesA correct explanation with the words in bold. Allow equivalent words eg out valuesCorrect probabilities – may be seen in an equation or implied by a correct pro- for $R = 0$ or for 2 correct probabilities from those for $R = 40$, $R = 70$, $R = 110$ All four ranges correct with no extra.Correct method for finding $P(R = 0)$ All the correct combinations for $R = 40$, 70 and 110. $R = 0$ combinations are no required but no incorrect combinations must be seen (may use bag size rather numbers in bag) May be implied by a correct probability for $P(R = 40)$, $P(R = 110)$ or by correct working seen for each of the 7 combinations (no need number of ways of arranging ie $3 \times \text{or } 6 \times$) eg $(40,40,80) = 0.5^2 \times 0.3$ Correct method for a second probability for $P(R = 40)$, $P(R = 70)$, $P(R = 110)$ probabilities add up to 1.Correct answer only. Allow answers as a fraction. Need not be in a table but probabilities must be attached to the correct rangeSetting up a correct inequality using their 0.09Allow written as an equation.	(3) Total 11 comes for bability ot than = 70) and d for the 10)) or the 4

PMT

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom